VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. III-Semester Supplementary Examinations, August-2022

Linear Algebra and its Applications (OE-I)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 Marks)$

Q. No.	Stem of the question	M	L	СО	PO
1.	Define Subspace of a Vector Space.	2	1	1	1,12
2.	Find the coordinates of the vector $\begin{bmatrix} 1 \\ 5 \end{bmatrix}$ relative to the ordered basis	2	3	1	1,12
	$B = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}.$				
3.	Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} e^x \\ e^y \end{bmatrix}$ is T a Linear Transformation? justify your answer.	2	2	2	1,12
4.	Let V and W be vector spaces, and Let $T:V \to W$ be a linear transformation. Then show that $T(0) = 0$	2	1	2	1,12
5.	State Rank Nullity theorem.	2	1	3	1,12
6.	Define Inverse of a Linear Transformation.	2	1	3	1,12
7.	Find the angle between the two vectors $u = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$ and $v = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}$.	2	2	4	1,12
8.	Define Inner Product space.	2	1	4	1,12
9.	Write the ordered Basis for vector space V a) $V = P_n(x)$ b) $V = \text{set of all matrices of order } 2X2$.	2	1	1	1,12
10.	Let $T: P_3 \to P_2$ is a Linear Transformation	2	2	2	1,12
	Defined by $T(p(x)) = \frac{d}{dx}p(x)$. Describe the polynomials in P_3 that are mapped to the zero vectors in P_3 .				
	Part-B ($5 \times 8 = 40 \text{ Marks}$)				
11. a)	Write all the 10 axioms of a vector space over the field F .	5	2	1	1,12
b)	If $B = \{2x^2 + x + 2, 1, -x^2 + x\}$. Determine whether B is a Basis for $P_2(x)$ or not.	3	3	1	1,12

12. a)	$T: R^3 \to R^2$ defined by $T \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3x - 2y + z \\ x - 3y - 2z \end{bmatrix}$,	4	2	2	1,12
	Verify that T is linear transformation or not.	-			
b)	Let $T: P_2 \to P_2$ is a Linear operator and $T(1) = 1 + x$, $T(x) = 2 + x^2$, $T(x^2) = x - 3x^2$, then find $T(-3 + x - x^2)$.	4	3	2	1,12
13.	$T: \mathbb{R}^3 \to \mathbb{R}^2$ be a Linear Transformation defined by	8	4	3	1,12
	$T\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5x + 2y - 4z \\ x - 5y + 3z \end{bmatrix}. B_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \& B_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 5 \end{bmatrix}, \end{cases}$				
	are ordered basis for R^3 and R^2 respectively. Find the matrix of a linear transformation relative to the ordered basis B_1 & B_2 . Also find the image of	Sant			
	$v = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ directly and verify with matrix of a linear transformation.				
14.	Let $B = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix}$ is a basis for R^3 , Apply Gram-Schmidt process to B	8	3	4	1,12
15. a)	to find orthonormal basis for R^3 with respect to standard inner product.	4	3	1	1 12
	If $S = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$, Determine whether the vector $v = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ is in Span(S) or not?	7	3	1	1,12
b)	Let $T: P_3 \to \mathbb{R}^2$ is a Linear Transformation	4	3	2	1,12
	Defined by $T(ax^3 + bx^2 + cx + d) = \begin{bmatrix} -a - b + 1 \\ c + d \end{bmatrix}$. Let				.,.2
	$u = -x^3 + 2x^2 - x + 1$, $v = x^2 - 1$ then Find				
	a) $T(u)$ and $T(v)$ b) Is $T(u+v) = T(u)+T(v)$?				
16. a)	Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a Linear Transformation by $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} -x+y \\ x+y \end{bmatrix}$	4	3	3	1,12
	Then find the basis for R (T) and N(T).				

b)	Let $V = p_2$ with inner product defined by $\langle p, q \rangle = \int_{-1}^{1} p(x) \cdot q(x) dx$. If $p(x) = x$ and $q(x) = x^2 - x + 1$ then find cosine angle between $p(x) & q(x)$	4	2	4	1,12
17.	Answer any <i>two</i> of the following: $p(x) = x - x + 1 \text{ then find cosine angle between } p(x) \otimes q(x)$				
a)	If $S = \begin{cases} 2 \\ -3 \\ 0 \end{cases}$, $\begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}$, $\begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix}$ Find the basis for the Span(S) as a subspace of	4	3	1	1,12
b)	R^3 Let V and W be vector spaces, and Let S, $T:V \to W$ be a linear transformation. The function	4	2	2	1,12
c)	$S+T:V \to W$ defined by $(S+T)v=S(v)+T(v)$ Then prove that $S+T$ is Linear Transformation.	4	2	2	1.17
	Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a Linear Transformation by $T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3x - y \\ x + y \end{bmatrix}$ find T^{-1} .	4	3	3	1,12

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1 & 2	61%
ii)	Blooms Taxonomy Level – 3 & 4	39%
